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Abstract. We introduce a formulation of gauge theory on noncommutative spaces based on the notion of
covariant coordinates. Some important examples are discussed in detail. A Seiberg-Witten map is estab-
lished in all cases.

1 Introduction

We introduce a natural method to formulate a gauge the-
ory on more or less arbitrary noncommutative spaces. The
starting point is the observation that multiplication of a
(covariant) field by a coordinate can in general not be a
covariant operation in noncommutative geometry, because
the coordinates will not commute with the gauge trans-
formations. The idea is to make the coordinates covariant
by adding a gauge potential to them. This is analogous to
the case in usual gauge theory; one adds gauge potentials
to the partial derivatives to obtain covariant derivatives.
One can consider a covariant coordinate as a position-
space analogue of the usual covariant momentum of gauge
theory.

In the following we prefer not to present the general
case of an arbitrary associative algebra of noncommuting
variables; we consider rather three important examples in
which the commutator of two coordinates is respectively
constant, linear and quadratic in the coordinates. We em-
ploy Weyl’s quantization procedure to associate with an
algebra of noncommuting coordinates an algebra of func-
tions of commuting variables with deformed product. One
of our examples gives the same kind of noncommutative
gauge theory that has appeared in string theory recently
[1].

2 Covariant coordinates

The associative algebraic structure Ax which defines a
noncommutative space can be defined in terms of a set
of generators x̂i and relations R. Instead of considering a
general expression for the relations we shall discuss rather
some important explicit cases. These are of the form of a
canonical structure

[x̂i, x̂j ] = iθij , θij ∈ C, (2.1)

a Lie-algebra structure

[x̂i, x̂j ] = iCij
kx̂

k, Cij
k ∈ C, (2.2)

and a quantum space structure [2–5]

x̂ix̂j = q−1R̂ij
klx̂

kx̂l, R̂ij
kl ∈ C. (2.3)

In all these cases the index i takes values from 1 to N . We
shall suppose that Ax has a unit element. For the quantum
space structure a simple version is the Manin plane, with
N = 2:

x̂ŷ = qŷx̂, q ∈ C. (2.4)

We shall refer to the generators x̂i of the algebra as ‘co-
ordinates’ and we shall consider Ax to be the algebra of
formal power series in the coordinates modulo the rela-
tions

Ax ≡ C
[
[x̂1, . . . , x̂N ]

]
/R. (2.5)

For a physicist this means that one is free to use the rela-
tions (2.1), (2.2) or (2.3), (2.4) to reorder the elements of
an arbitrary power series.

We consider fields as elements of the algebra Ax:

ψ(x̂) = ψ(x̂1, . . . , x̂N ) ∈ Ax. (2.6)

We shall introduce the notion of an infinitesimal gauge
transformation δψ of the field ψ and suppose that under an
infinitesimal gauge transformation α(x̂) it can be written
in the form

δψ(x̂) = iα(x̂)ψ(x̂); α(x̂), ψ(x̂) ∈ Ax. (2.7)

This we call a covariant transformation law of a field. It
follows then of course that δψ ∈ Ax. Since α(x̂) is an
element of Ax it is the equivalent of an abelian gauge
transformation. If α(x̂) belonged to an algebraMn(Ax) of
matrices with elements in Ax then it would be the equiv-
alent of a non-abelian gauge transformation.
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An essential requirement is that the coordinates be
invariant under the action of a gauge transformation:

δx̂i = 0.

Multiplication of a field on the left by a coordinate is then
not a covariant operation in the noncommutative case.
That is

δ(x̂iψ) = ix̂iα(x̂)ψ (2.8)

and in general the right-hand side is not equal to iα(x̂)x̂iψ.
Following the ideas of ordinary gauge theory we introduce
covariant coordinates X̂i such that

δ(X̂iψ) = iαX̂iψ, (2.9)

that is, δ(X̂i) = i[α, X̂i]. To find the relation between X̂i

and x̂i we make an Ansatz of the form

X̂i = x̂i +Ai(x̂), Ai(x̂) ∈ Ax. (2.10)

This is quite analogous to the expression of a covariant
derivative as the sum of an ordinary derivative plus a
gauge potential.1

We derive the transformation properties of Ai from the
requirement (2.9):

δAi = i[α,Ai]− i[x̂i, α]. (2.11)

The right hand side can be evaluated using one of the
relations (2.1), (2.2) or (2.3). It is easy to see that a tensor
T ij can be defined in each case as respectively

T ij = [X̂i, X̂j ]− iθij (2.12)

in the canonical case,

T ij = [X̂i, X̂j ]− iCij
kX̂

k (2.13)

for the Lie-structure and

T ij = X̂iX̂j − q−1R̂ij
klX̂

kX̂ l (2.14)

for the quantum space.2 We verify directly that the objects
T ij are covariant tensors. In the canonical case we find

T ij = [Ai, x̂j ] + [x̂i, Aj ] + [Ai, Aj ],

δT ij = [δAi, x̂j ] + [x̂i, δAj ] + [δAi, Aj ] + [Ai, δAj ]. (2.15)

1 There is a ‘dual element’ λi closely related to the coordinate
x̂i and defined so that the inner derivation adλi of Ax plays
the role of the ordinary derivative. In this context a general
consistency relation for the λi has been given [6,8] which also
covers the relations (2.1), (2.2) and (2.3). This relation states
that when the X̂i vanish the T ij must lie in the center of the
algebra.

2 These are not the only covariant objects which can be con-
structed from the X̂i but they have a natural geometric signif-
icance as gauge field strengths. The second expression (2.13),
for example, has a direct interpretation [7] as the field strength
of an abelian gauge potential over a geometry with Ax = Mn,
the algebra of n × n matrices.

We insert δAi from (2.11), use the Jacobi identity and
obtain

δT ij = i[α, T ij ]. (2.16)

Exactly the same procedure leads to the result for the Lie
structure:

T ij = [x̂i, Aj ] + [Ai, x̂j ] + [Ai, Aj ]− iCij
kA

k,

δT ij = i[α, T ij ]. (2.17)

In the case of the quantum space we find

T ij = P ij
kl(Akx̂l + x̂kAl +AkAl) (2.18)

where we have introduced P defined as

P ij
kl = δi

kδ
j
l − q−1R̂ij

kl. (2.19)

We again insert δAi from (2.11) to compute δT ij . We ob-
tain

δT ij = iP ij
kl

{
[α,Ak]x̂l + [α, x̂k]x̂l + x̂k[α,Al] + x̂k[α, x̂l]

+[α,Ak]Al + [α, x̂k]Al

+Ak[α,Al] +Ak[α, x̂l]
}
. (2.20)

With relation (2.3) this becomes

δT ij = i[α, T ij ]. (2.21)

3 Weyl quantization

In the framework of canonical quantization HermannWeyl
[9] gave a prescription how to associate an operator with
a classical function of the canonical variables. This pre-
scription can also be used to associate an element of Ax

with a function f of classical variables x1, . . . xn [10]. We
use x̂ for elements of Ax and x for the associated classical
commuting variables. Using the Fourier transform

f̃(k) =
1

(2π)
n
2

∫
dnx e−ikjxj

f(x) (3.1)

of the function f(x1, . . . xn) we define an operator

W (f) =
1

(2π)
n
2

∫
dnk eikj x̂j

f̃(k). (3.2)

This is a unique prescription, the operator x̂ replaces the
variables x in f in the most symmetric way. If the opera-
tors x̂ have hermiticity properties W (f) will inherit these
properties for real f . At present we are interested in the
algebraic properties only.

Operators obtained by (3.2) can be multiplied to yield
new operators. The question arises whether or not these
new operators can be associated also with classical func-
tions. If such a function exists we call it f � g (‘f diamond
g’):

W (f)W (g) =W (f � g). (3.3)
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We can write (3.3) more explicitly as

W (f)W (g) =
1

(2π)n

∫
dnkdnp eikix̂

i

eipj x̂j

f̃(k)g̃(p).

(3.4)
If the product of the two exponentials can be calculated
by the Baker-Campbell-Hausdorff formula to give an ex-
ponential of a linear combination of the x̂i the function
f � g will exist. This is the case for the canonical struc-
ture:

eikix̂
i

eipj x̂j

= ei(kj+pj)x̂j− i
2 kipjθij

. (3.5)

A comparison with (3.2) shows that (f �g)(x) can be com-
puted from (3.4) and (3.5) by replacing x̂ by x.

f � g =
f ∗ g = 1

(2π)n

∫
dnkdnp ei(kj+pj)xj− i

2 kiθ
ijpj f̃(k)g̃(p)

= e
i
2

∂

∂xi θij ∂

∂yj f(x)g(y)
∣∣∣
y→x

(3.6)

We obtain the Moyal-Weyl ∗-product [11].
A similar ∗-product is obtained for the Lie structure:

eikix̂
i

eipj x̂j

= eiPi(k,p)x̂i

(3.7)

where Pi(k, p) are the parameters of a group element ob-
tained by multiplying two group elements, one para-
metrized by k and the other by p. From the Baker-
Campbell-Hausdorff formula we know that

Pi(k, p) = ki + pi +
1
2
gi(k, p) (3.8)

where gi contains the information about the noncommuta-
tive structure of the group. Again we find the star product
after a Fourier transformation

f � g = f ∗ g = 1
(2π)n

∫
dnkdnp eiPi(k,p)xi

f̃(k)g̃(p)

= e
i
2 xi gi(i ∂

∂y ,i ∂
∂z )f(y)g(z)

∣∣∣
y→x
z→x

. (3.9)

A more complicated situation arises for the quantum
plane structure. The Baker-Campbell-Hausdorff formula
cannot be used explicitly. The Weyl quantization (3.2)
does not seem to be the most natural one. At the moment
we are only interested in the algebraic structure of the
theory. In this context any unique way of associating an
operator with a function of the classical variables would
do. For the quantum plane this could be a normal order-
ing. We treat the case of the Manin plane (2.4) explicitly.
With any monomial in x y we associate the normal ordered
product of the operators x̂, ŷ where all the x̂ operators are
placed to the left and all the ŷ operators to the right:

W (f(x, y)) = : f(x̂, ŷ) : (3.10)

The dots indicate the above normal ordering. Equation
(3.3) now has to be written in the form:

: f(x̂, ŷ) : : g(x̂, ŷ) : = : f � g(x̂, ŷ) : (3.11)

Let us first compute this for monomials:

x̂n1 ŷm1 x̂n2 ŷm2 = q−m1n2 x̂n1+n2 ŷm1+m2 (3.12)

: x̂n1 ŷm1 : : x̂n2 ŷm2 : = q−m1n2 : x̂n1+n2 ŷm1+m2 :

=W

(
q−x′ ∂

∂x′ y ∂
∂y xn1ym1x′n2y′m2

∣∣∣
x′→x
y′→y

)

This is easily generalized to arbitrary power series in x
and y

f � g = q−x′ ∂
∂x′ y ∂

∂y f(x, y)g(x′, y′)
∣∣∣

x′→x
y′→y

(3.13)

and we have obtained a diamond product for the Manin
plane. Instead of the x̂ŷ ordering we could have used the
ŷx̂ ordering or, more reasonably, the totally symmetric
product of the x̂ŷ operators. For monomials of fixed de-
gree the x̂ŷ ordered and the ŷx̂ ordered as well as the
symmetrically ordered products form a basis. Thus the
diamond product exists in all the cases and it is only a
combinatorial problem to compute it explicitly.

Weyl quantization allows the representation of an ele-
ment of Ax by a classical function of x. For a constant c
and for x̂i ∈ Ax this is trivial:

c → c, x̂i → xi. (3.14)

The formula (3.3) can be used to generalize this to any el-
ement of Ax. As an example we take the bilinear elements
of Ax.

x̂ix̂j =W (xi)W (xj) =W (xi � xj), x̂ix̂j → xi � xj .
(3.15)

In particular

W (xixj) =
1
2
(x̂ix̂j + x̂j x̂i) (3.16)

for the canonical structure and the Lie structure. For the
quantum space structure we have

W (xixj) = : x̂ix̂j : (3.17)

The elements of Ax can be represented by functions f(x),
the multiplication of the elements by the star product of
the functions. This product is associative. Let us now rep-
resent a field by a classical function ψ(x). The gauge trans-
formation (2.7) is represented by α(x):

δαψ(x) = iα(x) � ψ(x). (3.18)

We immediately conclude that

(δαδβ − δβδα)ψ(x) = iβ(x) � (α(x) � ψ(x))
−iα(x) � (β(x) � ψ(x))

= i (β � α− α � β) � ψ. (3.19)

The transformation law of Ai(x), representing the element
Ai ∈ Ax is:

δAi = i[α �, Ai]− i[xi �, α] (3.20)
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and for the tensors T ij(x):

δT ij = i[α �, T ij ]. (3.21)

Where T ij is defined as in (2.12), (2.13), (2.14), but with
elements of Ax and algebraic multiplication replaced by
the corresponding functions and diamond product:

T ij = [Ai �, xj ] + [xi �, Aj ] + [Ai �, Aj ]

T ij = [xi �, Aj ] + [Ai �, xj ] + [Ai �, Aj ]− iCij
kA

k (3.22)

T ij = P ij
kl(Ak � xl + xk �Al +Ak �Al).

4 Noncommutative gauge theories

4.1 Canonical structure

We would now like to give explicit formulae for the gauge
transformation and tensor in the canonical case and will
explain the relation to the conventions of noncommutative
Yang-Mills theory as presented in [1]. The commutator
[x̂i, .] in the transformation of a gauge potential (2.11),

δAi = −i[x̂i, α] + i[α,Ai],

acts as a derivation on elements of Ax. Due to the special
form of the commutation relations (2.1) with the constant
θij , this commutator can in fact be written as a derivative
on elements f ∈ Ax:

[x̂i, f ] = iθij∂jf. (4.1)

The derivative ∂j is defined as a derivation on Ax, that is,
∂jfg = (∂jf)g+f(∂jg) and on the coordinates as: ∂j x̂

i ≡
δi
j . The right-hand side of (4.1) is a derivation because the
matrix θ is constant and commutes with everything. We
find that in the canonical case the gauge transformation
can be written

δAi = θij∂jα+ i[α,Ai]. (4.2)

The gauge potential Â of noncommutative Yang-Mills is
introduced by the identification

Ai ≡ θijÂj . (4.3)

We must here assume that the matrix θ is non-degenerate.
We find the following transformation law for the gauge
field Âj :

δÂj = ∂jα+ i[α, Âj ]. (4.4)

It has exactly the same form as the transformation law for
a non-abelian gauge potential in commutative geometry,
except that in general the meaning of the commutator is
different. An explicit expression for the tensor T in the
canonical case (2.15) is found likewise,

T ij = iθik∂kA
j − iθjl∂lA

i + [Ai, Aj ]. (4.5)

Up to a factor i, the relation to the field strength F̂ of
noncommutative Yang-Mills is again simply obtained by
using θ to raise indices:

T ij ≡ iθikθjlF̂kl. (4.6)

Assuming again non-degeneracy of θ, we find

F̂kl = ∂kÂl − ∂lÂk − i[Âk, Âl]. (4.7)

According to our conventions we are to consider this as
the field strength of an abelian gauge potential in a non-
commutative geometry, but except for the definition of the
bracket it has again the same form as a non-abelian gauge
field-strength in commutative geometry. Since θij ∈ C, F̂
is a tensor:

δF̂kl = i[α, F̂kl]. (4.8)

These formulae become clearer and the relation to non-
commutative Yang-Mills theory is even more direct, if we
represent the elements of Ax by functions of the classical
variables xi and use the Moyal-Weyl star product (3.6).
In particular equation (4.1) becomes

xi ∗ f − f ∗ xi = iθij∂jf, (4.9)

where f(x) is now a function and ∂jf = ∂f/∂xj is the
ordinary derivative. This follows directly from the Moyal-
Weyl product (3.6). The identifications (4.3,4.6) have the
same form as before. The relevant equations written in
terms of the star product become

δAi = θij∂jα+ iα ∗Ai − iAi ∗ α, (4.10)

T ij = iθik∂kA
j − iθjl∂lA

i +Ai ∗Aj −Aj ∗Ai, (4.11)

δT ij = iα ∗ T ij − iT ij ∗ α, (4.12)

δÂj = ∂jα+ iα ∗ Âj − iÂj ∗ α, (4.13)

F̂kl = ∂kÂl − ∂lÂk − iÂk ∗ Âl + iÂl ∗ Âk, (4.14)

δF̂kl = iα ∗ F̂kl − iF̂kl ∗ α (4.15)

and
δαδβ − δβδα = δ(β∗α−α∗β). (4.16)

All this clearly generalizes to Ai, α, Âj and F̂kl that are
(hermitian) n× n matrices. We shall return to this point
later. It is interesting to note the form of the covariant
coordinates written in terms of Â:

X̂i = x̂i + θijÂj . (4.17)

This expression has appeared in string theory contexts
related to noncommutative Yang-Mills theory mainly as a
coordinate transformation [12–14].

Remark. Ordinary gauge theory can be understood as
a special case of gauge theory on the noncommutative
canonical structure as follows: Consider coordinates
{q̂j , p̂i} with canonical commutation relations [q̂j , p̂i] =
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iδj
i and restrict the allowed choices of infinitesimal gauge

transformations α to depend only on the q̂i, i.e., only on
half the original coordinates. Multiplying a field ψ by a
coordinate is now a non-covariant concept only for half
the coordinates, namely for the ‘momenta’ p̂i. The gauge
field A will thus depend only on the q̂i, as will the tensor
T . It is not hard to see that the relations of noncommuta-
tive gauge theory reduce in this case to those of ordinary
gauge theory. The algebra of the q̂j and p̂i can of course
be realized as ordinary commutative coordinates qj and
derivatives −i∂i.

4.2 Lie structure

The relations of noncommutative gauge theory on a Lie
structure (2.2) written in the language of star products
are

δAi = −i[xi ∗, α] + i[α ∗, Ai], (4.18)

T ij = [xi ∗, Aj ] + [Ai ∗, xj ] + [Ai ∗, Aj ]− iCij
kA

k, (4.19)

δT ij = iα ∗ T ij − iT ij ∗ α, (4.20)

where Ai and α are functions of the (commutative) coor-
dinates xi and the ∗-product is given in (3.9). As in the
canonical case, [xi ∗, f(x)] can be written in terms of a
derivative of f

[xi ∗, f(x)] = iCij
kx

k ∂f

∂xj
, (4.21)

but the proof is not so obvious, because the left-hand side
is a derivation of the noncommutative ∗-product while the
right-hand side is a derivation with respect to the commu-
tative point-wise product of functions. However, these two
notions can be reconciled thanks to the symmetrization
inherent in the Weyl quantization procedure. Equations
(4.18) and (4.19) can thus also be written as

δAi = Cij
kx

k∂jα+ iα ∗Ai − iAi ∗ α, (4.22)

T ij = iCil
kx

k∂lA
j − iCjl

kx
k∂lA

i

+[Ai ∗, Aj ]− iCij
kA

k. (4.23)

5 Non-abelian gauge transformations

In this case the parameter α(x̂) in (2.7) and the gauge
field A in (2.10) will be matrix valued:3 α = αrT

r and
A = ArT

r, where αr, Ar ∈ Ax and the T r form a suitable
basis of matrices. It is not clear what conditions we can
consistently impose on these matrices and in particular
in which sense they can be Lie-algebra valued; we can,
however, always assume that α and A are in the enveloping
algebra of a Lie algebra. Let us consider the commutator

3 For notational simplicity we are suppressing the index i on
Ai.

(2.11). It can be written as a sum of commutators and
anti-commutators of the matrices T i:

[α,A] =
1
2
(αrAs +Asαr)[T r, T s]

+
1
2
(αrAs −Asαr){T r, T s}. (5.1)

In the commutative case the second term is zero and it
is clear that one can choose Tr from any matrix repre-
sentation of a Lie algebra. Here, however, αr and As do
not commute. As we shall see it is nevertheless possible
to consistently impose hermiticity, while it is for example
not consistent to impose tracelessness.

Let us now assume that the relations (2.1), (2.2), (2.3)
or (2.4) admit a conjugation:

(x̂i)∗ = x̂i (5.2)

This will be the case for real θij , real Cij
k and, in (2.4), q

a root of unity. Then it makes sense to speak about “real”
functions

f∗(x̂) = f(x̂), (5.3)

and in this case α could be hermitian:

α(x̂) = αl(x̂)T l = α∗(x̂),

(αl(x̂))∗ = αl(x̂), T †
l = Tl. (5.4)

The commutation of those hermitian objects will be anti-
hermitian:

([α(x), β(y)])∗ = −[α(x), β(y)]. (5.5)

We conclude that with α, A and x̂ hermitian, δA in (2.11)
will be hermitian again. If the matrices Tl form a basis
for all hermitian matrices of a certain dimension, then the
commutators and anti-commutators in (5.1) will also close
into these matrices.

6 Seiberg-Witten map

Seiberg and Witten were able to establish a connection
of noncommutative Yang-Mills theory to ordinary Yang-
Mills theory. We show that this can be done for all three
examples we have considered. We shall consider the more
general non-abelian case. The ordinary gauge potential we
shall call ai and the infinitesimal gauge parameter ε. The
transformation law of the gauge potential ai is

δεai = ∂iε+ i[ε, ai]. (6.1)

This has to be compared with the gauge transformation
(3.20)

δAi = i[α �, Ai]− i[xi �, α]. (6.2)

The diamond product can be written in a formal way anal-
ogous to deformation quantization [15,16]

f � g = fg +
∑
n≥1

hnBn(f, g), (6.3)
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where the Bn are differential operators bilinear in f and
g, and h is an expansion parameter. We are interested in
three special cases:
the canonical case

f � g = fg +
∑
n≥1

1
n!

(
i

2

)n

θi1j1 · · · θinjn(∂i1 · · · ∂inf)

×(∂j1 · · · ∂jng), (6.4)

the Lie case

f � g = fg +
∑
n≥1

1
n!

(
i

2

∑
k

xkgk(i∂y, i∂z)

)n

f(y)g(z)

∣∣∣∣∣
y=x
z=x

= fg +
i

2
xkCij

k∂if∂jg + . . . , (6.5)

and the quantum space case (with h = ln q)

f � g = fg +
∑
n≥1

1
n!
(−h)n

(
(y∂y)

n
f
)(

(x∂x)
n
g
)
. (6.6)

The identification with formula (6.3) is obvious. In the
following we shall work to second order in h only. For
the canonical and the Lie structure the formula for the ∗
commutator is

[f ∗, g] = iθij(x)∂if∂jg +O(θ3). (6.7)

This expression does not contain any terms in second order
in θ. This is typical for a deformation quanization of a
Poisson structure [16]. As a consequence the second term
on the right-hand side of (6.2) will be:

[xi ∗, α] = iθij∂jα+O(θ3). (6.8)

For the canonical and the Lie structure there are in fact no
terms of higher than linear order in θ, see (4.9) and (4.21).
Following Seiberg and Witten we construct explicitly local
expressions A and α in terms of a, ε and θ. This we do by
the following Ansatz:

Ai = θijaj +Gi(θ, a, ∂a, . . .) +O(θ3),

α = ε+ γ(θ, ε, ∂ε, . . . , a, ∂a, . . .) +O(θ2),
(6.9)

where Gi and γ are of next to leading order in θ. We re-
quire that the variation δAi of (6.9) with the infinitesimal
parameter α be obtained from the variation (6.1) of ai.
This is true to first order in θ due to the Ansatz (6.9). In
second order we obtain an equation for Gi and γ:

δεG
i = θij∂jγ − 1

2θ
kl
{
∂kε, ∂l(θijaj)

}
+i[ε,Gi] + i[γ, θijaj ].

(6.10)

This equation has the following solution:

Gi = − 1
4θ

kl{ak, ∂l(θijaj) + θijFlj},
γ = 1

4θ
lm{∂lε, am},

(6.11)

where Fij is the classical field strength Fij = ∂iaj −∂jai −
i[ai, aj ]. To prove that this indeed solves Equation (6.10),
one has to use the Jacobi identity for θij(x). In the canon-
ical case, that is with θij constant, this is the same result
as found previously [1] if one takes into account the iden-
tification (4.3).

Our quantum space example does not fit into the
framework of deformation quantization as specified by
(6.7); a quadratic term in h = ln q appears:

[f �, g] = −hxy(∂yf∂xg − ∂yg∂xf)

+
1
2
h2xy {(∂yf∂xg − ∂yg∂xf)

+xy(∂2
yf∂

2
xg − ∂2

yg∂
2
xf)

+x(∂yf∂
2
xg − ∂yg∂

2
xf)

+y(∂2
yf∂xg − ∂2

yg∂xf)
}

(6.12)

This has as a consequence that a second order term will
appear in the following formula:

[x �, α] = +hxy∂yα− 1
2h

2xy∂y(y∂yα)

[y �, α] = −hxy∂xα+ 1
2h

2xy∂x(x∂xα).
(6.13)

Nevertheless a Seiberg-Witten map can be constructed –
at least for the abelian case. The transformation is

Ax = −ihxyay +
1
2
h2xy [∂y(xax(yay − i))

−∂x(xyayay)] +O(h3)

Ay = +ihxyax +
1
2
h2xy [∂x(yay(xax + i))

−∂y(xyaxax)] +O(h3)

α = ε+
1
2
h [y∂yα+ x∂xα+ ixy(ax∂yα− ay∂xα)]

+O(h2). (6.14)

This suggests that there should be an underlying geomet-
ric interpretation of the Seiberg-Witten map.

References

1. N. Seiberg, E. Witten, String Theory and Noncommuta-
tive Geometry, JHEP 9909, 032 (1999), hep-th/9908142

2. J. Wess, q-deformed Heisenberg Algebras, math-
ph/99100013

3. B. L. Cerchiai, R. Hinterding, J. Madore, J. Wess, A calcu-
lus based on a q-deformed Heisenberg Algebra, Eur. Phys.
J. C 8, 547 (1999), math/9809160

4. J. Wess, B. Zumino, Covariant Differential Calculus on
the Quantum Hyperplane, Nucl. Phys.B (Proc. Suppl) 18
B, 302 (1990)

5. W. B. Schmidke, J. Wess, B. Zumino, A q-deformed
Lorentz Algebra, Z. Phys. C 52, 471 (1991)

6. A. Dimakis, J. Madore, Differential calculi and linear con-
nections, J. Math. Phys. 37, 4647 (1996)

7. M. Dubois-Violette, R. Kerner, J. Madore, Gauge bosons
in a noncommutative geometry, Phys. Lett. B 217, 485
(1989)



J. Madore et al.: Gauge theory on noncommutative spaces 167

8. J. Madore, An introduction to noncommutative differen-
tial geometry and its physical applications. No. 257 in
London Mathematical Society Lecture Note Series. Cam-
bridge University Press, second ed., 1999

9. H. Weyl, Quantenmechanik und Gruppentheorie, Z.
Physik 46, 1 (1927); The theory of groups and quan-
tum mechanics, Dover, New-York (1931), translated from
Gruppentheorie und Quantenmechanik, Hirzel Verlag,
Leipzig (1928)

10. E. P. Wigner, Quantum corrections for thermodynamic
equilibrium, Phys. Rev. 40, 749 (1932)

11. J. E. Moyal, Quantum mechanics as a statistical theory,
Proc. Cambridge Phil. Soc. 45, 99 (1949)

12. L. Cornalba, D-brane Physics and Noncommutative Yang-
Mills Theory, hep-th/9909081

13. N. Ishibashi, A Relation between Commutative and Non-
commutative Descriptions of D-branes, hep-th/9909176
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